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Abstract.This paper presents a mathematical formulation for the break-even problem in a non-

homogeneous system. The optimization problem aims to obtain the composition of the best product mix in a 

non-homogeneous industrial plant, with the lowest cost until the Break-Even Point is reached. The 

constraints of the problem represent real constraints of a generic inhomogeneous industrial plant for n distinct 

products. The proposed model can solve the break-even problem simultaneously for all products, unlike 

existing approaches that propose a sequential solution, considering each product in isolation and providing a 

suboptimal solution to the problem. The results indicate that the product mix found through the proposed 

model has economic advantages over the traditional approach used. 
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1. Introduction 

The Break-Even Point (BEP) indicates the level of production at which profit is null [1] [2] [3] [4] [5] 

and, therefore, is associated with a product mix in which the total cost is equivalent to the total revenue from 

the sale of products. The mathematical analysis of the Break-Even Point is useful to assist managers in 

making short and medium-term decisions since BEP provides the manager with the minimum quantities of 

each product necessary to balance the fixed costs of production and the unit costs of each of the products. 

their respective recipes [1][2][3]. In general, the BEP is obtained directly from the Sales Price (PV), the 

Variable Unit Cost (𝐶𝑉𝑢), and the Fixed Cost (CF). Average values of these quantities are obtained for each 

product in isolation, which is not appropriate for the analysis of a production line with the capacity to process 

more than one type of product.  

In this work a generic model of Integer Linear Programming (PLI) is proposed for the Break-Even Point 

problem that can be applied to several products simultaneously. The main objective is to obtain an optimum 

break-even value in a non-homogeneous production system so that the total production cost up to the BEP is 

less than that obtained by traditional approaches [1][2][4][5]. The proposed approach allows the 

determination of the BEP in a non-homogeneous system associated with a total variable cost lower than that 

obtained in the traditional approach, this directly implies in increasing the competitiveness of the production 

system, since after the BEP, any linear combination of the product mix will lead to profit, since fixed costs 

have already been paid and the selling price will be higher than the variable unit cost. 

Some proposals for optimization models in non-homogeneous systems are presented in the literature. 

González (2001) [6], the author develops an alternative model for multi-product cost-volume-profit based on 

ABC systems, in which the Break-Even Point is obtained based on the main products (best-selling or with 

the highest profit margin). This approach is justified to the extent that the greater the contribution margin of 
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the product, the more quickly the fixed cost of the plant will be amortized. Stefan and Stefan (2008)[4], 

propose a model based on profit optimization. An approach based on the product mix is presented by [7] in 

which the contribution margins of each product are optimized, which also leads to profit maximization. Tsai 

and Lin (1990) [8] present a binary mixed integer programming model for the non-linear cost-volume-profit 

analysis of various products using a selective approach. Kucharski and Wywial [3] propose two models. The 

first comprises the maximization of unit profit and aims to anticipate the amortization of the fixed cost, thus 

reducing the number of units necessary to achieve the BEP. In this case, a sub-optimal approach is adopted 

through multicriteria analysis and the Manhattan similarity metric, aiming to bring the BEP close to zero. 

The second model is based on minimizing the variable cost of production resulting in a system of differential 

equations that allows a solution for a specific situation in which the ratio between the contribution margin 

and the cost is high. 

The main contribution of this work consists of proposing a model in which all available products are 

used to amortize the fixed cost, thus resulting in an optimal combination of the product mix. The results 

obtained show that the proposed optimization model presents significant economic advantages in relation to 

the current model, generating an average saving of 16.34% for the analyzed system, in addition to the 

reduction in the number of units necessary to reach the BEP. This work shows, for the first time, the 

determination of the equilibrium point represented by units of different types of products and the proposed 

model can be applied in other non-homogeneous systems. 

2. Methodology 

2.1. Inhomogeneous Production 

The total cost of production in a homogeneous system is given by: 

𝐶𝑇 = 𝐶𝐹𝑡 + (𝑞 ∗ 𝐶𝑉𝑢)     (1) 

where 𝐶𝐹𝑡 is the total fixed cost, 𝐶𝑉𝑢 is the variable unit cost and q is the number of units produced. 

If the total revenue (derived exclusively from sales) is equal to the total cost of production, the profit is 

zero and the production equilibrium is reached: 

𝑞𝑏𝑝 =
𝐶𝐹𝑡

(𝑃𝑉−𝐶𝑉𝑢)
      (2) 

where PV is the selling price and 𝑞𝑏𝑝 it is the balance point for a homogeneous system. 

The determination of the Break-Even Point in a non-homogeneous production line can be analyzed based 

on an optimization problem. In this case, the total cost of production and the total revenue are given by: 

𝐶𝑇 = 𝐶𝐹𝑡 + ∑ (𝑞𝑖
𝑛
𝑖=1 ∗ 𝐶𝑉𝑢𝑖)     (3) 

𝑅𝑇 = ∑ (𝑞𝑖 ∗ 𝑃𝑉𝑖
𝑛
𝑖=1 )     (4) 

where𝐶𝑉𝑢𝑖
, 𝑃𝑉𝑖 e 𝑞𝑖  are the unit variable cost, the selling price and the quantity produced of the product 

 𝑖 (𝑖 = 1, … , 𝑛), respectively. 

From (3) and (4) the following relations are reached between the equilibrium point associated with each 

of the products: 

∑ [𝑞𝑏𝑝,𝑖 ∗ (𝑃𝑉𝑖 − 𝐶𝑉𝑢𝑖)] − 𝐶𝐹𝑡
𝑛
𝑖=1      (5) 

The equation (5) it provides multiple solutions for the balance points of the products to be sold, which 

suggests the search for the best solution, obeying the restrictions inherent to the production and 

commercialization process. These restrictions are associated with the production capacity and demand for 

products by the consumer market and must be considered as strict limits of minimum (market demand) and 

maximum (production capacity) for each of the equilibrium points𝑞𝑏𝑝,𝑖, 𝑖 (𝑖 = 1, … , 𝑛).  

Another important aspect that must be taken into account when modelling this problem is the restrictions 

on production capacity and demand for products, as it would make no sense to obtain a result that is above 

the factory's production capacity, this would make it impossible to obtain the great results in practice. 

Likewise, it is necessary to meet market demands, so production must have a minimum required value, 

limiting the problem to a defined interval, with a minimum value equal to market demand and maximum 
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value equal to production capacity. In this way, as the individual quantity of products to be manufactured in 

order to reach the Break-Even Point cannot exceed the production capacity, as follows: 

𝑞
𝑏𝑝,𝑖

≤ 𝑘𝑖       (6) 

Where 𝑘𝑖  represents the maximum production capacity column vector for each of its products. 
Analogously to what was done with the values of individual capacities, it is possible to represent the 
constraints of individual demands by the vector, as follows: 

 ∙ 𝑑𝑖 ≤ 𝑞
𝑏𝑝,𝑖

      (7) 

The values of vector 𝑑𝑖 can be obtained through demand forecasting techniques using historical data of 

the organization's sales with a significantly representative time interval and with relative confidence. A 

relevant fact in relation to the demand constraint is that this cannot be the real demand, since, if the Break-

Even Pointis above the real average demand, it cannot be reached, there is no longer a demand for it. A 

solution to this problem is to use a correction factor , such that ∈(0,1) multiplying the vector d, this 

artifice will make the vector λ𝑑𝑖 move “below” the real average demand, as a consequence the Break-Even 

Pointwill be located within the region where the real average demand is. 

The market demand associated with each product has an intrinsically dynamic and periodic character. 

The approach proposed in this work consists of considering the demand for each product as an average of the 

sales forecast over a period of time that represents a seasonal pattern of behaviour. In this case, it is 

important to ensure that the lower demand limit for each product is not greater than the actual demand 

practiced at any given time, which would imply in achieving an unrealizable break-even point. 

With these elements in mind, it is then possible to establish a constraint that contemplates the upper and 

lower limits of the problem in question, as follows: 

 ∙ 𝑑𝑖 ≤ 𝑞
𝑏𝑝,𝑖

≤ 𝑘𝑖(𝑖 = 1, … , 𝑛)     (8) 

The objective function is to minimize the total variable cost, having the following optimization problem 

with entire decision variables: 

𝑀𝑖𝑛 𝐽(𝑞𝑏𝑝,1, … , 𝑞𝑏𝑝,2) ∑ (𝑞𝑏𝑝,𝑖 ∙ 𝐶𝑉𝑢𝑖
)𝑛

𝑖=1     (9) 

∑ [𝑞
𝑏𝑝,𝑖

∙ (𝑛
𝑖=1 𝑃𝑉𝑖 − 𝐶𝑉𝑢𝑖

)] −  𝐶𝐹𝑡 = 0    (10) 

 ∙ 𝑑𝑖 ≤ 𝑞𝑏𝑝,𝑖 ≤ 𝑘𝑖(𝑖 = 1, … , 𝑛) 

𝑞𝑏𝑝,𝑖, 𝑘𝑖, 𝑑𝑖 ∈ 𝑍         (𝑖 = 1, … , 𝑛) 

 ∈ (0,1) 

𝑘𝑖  and 𝑑𝑖  are the maximum capacities and average market demand associated with the product (𝑖 =

1, … , 𝑛) and  it is a parameter to be specified in such a way that the real demand for each product is met 

over a given period. 

The value of  plays a very important role in the model, as changing the value of this parameter changes 

the configuration of the BEP and, consequently, the value of the objective function at the optimal point 

(minimization of Total Cost), the value of the contraction factor  adopted was 0.25 for all products. From 

the tests carried out, it was possible to notice that when approaching  to 1, the problem has no solution, 

which is consistent with the hypothesis that there cannot be a BEP greater than the demand. Another way of 

interpreting this result is by analyzing the region of feasible solutions, as λ approaches 1 the number of 

viable solutions tends to zero. The highest value of  admitted by the model was 0.9 and a value above this 

limit results in a problem with no viable solution. Similarly, by approaching the parameter  to zero, the 

solution of the problem tends to increase the amount of product with a higher contribution margin and 

minimize the amount of the others, which is predicted by the equality constraint of the BEP that aims to 

dampen the fixed cost. In this way, the product with the highest contribution margin and highest production 

starts to have a greater impact on fixed cost amortization. 

3. Numerical Results and Conclusion 

The case study was done in a small company in the furniture segment. The company in question is 

located in the euro zone, has a plant with 3 production lines (Alder, Cherry and Walnut) and a total of 9 
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products, (Alexa, Alica, Aurélia, Elsa, Ema, Erika, Daniela, Diana and Denisa), with a maximum production 

capacity of 5030 units per month. 

From the data extracted from [4] and adapted in Table 1, it was then possible to calculate the Break-Even 

Pointthrough the variable cost method and also through the proposed modelling. 

Table 1:  Data from production line  

Production Lines Products Sale price Unit cost 

Alder 

Alexa  € 35.00   € 15.00  

Alica  € 40.00   € 20.00  

Aurélia  € 50.00   € 30.00  

Cherry 

Elsa  € 25.00   € 17.00  

Ema  € 25.00   € 17.00  

Erika  € 25.00   € 17.00  

Walnut 

Daniela  € 36.00   € 32.40  

Diana  € 32.00   € 28.80  

Denisa  € 34.00   € 30.60  

Source: Adapted from [2]. 

The results are presented in Tables 4 and 5 and show the BEP by product and by production line. The 

scenarios presented relate to changes in the maximum quantities produced of a given product on the 

production line, considering that the maximum capacity of the factory is 5030 units. Increasing the 

production of one type of product will imply a reduction in the production of another due to the physical 

limitations of the process. This fact changes the values of the break-even calculation, thus changing the final 

results for each product individually, the configuration for the possible scenarios, as well as for the initial 

condition of the manufacturing layout are shown in Table 2. 

Table 2: Possible Production Settings 

Products Initial Condition Scenario 1 Scenario 2 Scenario 3 

Alexa 1100.00 200.00 200.00 1100.00 

Alica 250.00 400.00 400.00 250.00 

Aurélia 50.00 800.00 800.00 50.00 

Elsa 400.00 1000.00 400.00 1000.00 

Ema 450.00 100.00 450.00 100.00 

Erika 380.00 130.00 380.00 130.00 

Daniela 500.00 500.00 1200.00 1200.00 

Diana 1500.00 1500.00 300.00 300.00 

Denisa 400.00 400.00 900.00 900.00 

∑ 5,030.00 5,030.00 5,030.00 5,030.00 

Source: Adapted from [2]. 

The data used in the calculation of the BEP by the proposed modeling for the initial condition and the 

other scenarios are shown in Table 3, and relate to the vector λ𝑑𝑖  and the parameter 𝑘𝑖  for each of the 

product. 

Table 3: Demand factor and maximum capacity 

Products 
λd 

Initial Condition Scenario 1 Scenario 2 Scenario 3 Maximum capacity 

Alexa 50.00 275.00 50.00 50.00 1100.00 

Alica 100.00 62.50 100.00 100.00 400.00 

Aurélia 200.00 12.50 200.00 200.00 800.00 

Elsa 100.00 100.00 250.00 100.00 1000.00 

Ema 112.50 112.50 25.00 112.50 450.00 

Erika 95.00 95.00 32.50 95.00 380.00 

Daniela 125.00 125.00 125.00 300.00 1200.00 

Diana 375.00 375.00 375.00 75.00 1500.00 

Denisa 100.00 100.00 100.00 225.00 900.00 
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The calculation of the Equilibrium Point by the proposed model used a lambda equal to 0.25 for both the 

calculation of the initial condition and for the other scenarios. This choice was made after simulations for 

several values of this parameter, the value of 0.25 being the result with a more uniform distribution of the 

products. Table 4 summarizes the results obtained by the standard model used, both for the initial condition, 

as well as for the other possible scenarios for production. 

Table 4: Break-Even Point(Standart method) 

Products Initial Condition Scenario 1 Scenario 2 Scenario 3 

BEP ($)a € 73.60 € 53.60 € 65.60 € 21.80 

BEP (und)b 1654 1653 1653 1637 

 und ∑ und ∑ und ∑ und ∑ 

Alexa 66 

461 

361 

460 

66 

461 

65 

455 Alica 132 82 132 130 

Aurélia 263 17 263 260 

Elsa 132 

405 

132 

405 

328 

404 

130 

401 Ema 148 148 33 147 

Erika 125 125 43 124 

Daniela 164 

788 

164 

788 

164 

788 

390 

455 Diana 492 492 492 98 

Denisa 132 132 132 293 

Source: Adaptedfrom[2] 
aBEP ($) – Residual value after reaching break-even point. 

bBEP (und) – Total units of products. 

 – Sum of BEP for each production line made up of 3 products. 

Table 4 shows the Break-Even Pointcalculated from the standard method which considers each product 

separately. 

Table 5 shows the Break-Even Pointcalculated from the model developed in the research and proposed in 

this article. The results in Table 5 show a significant reduction in the “BEP (und)” values, about 200 units, as 

well as meeting the theoretical constraint of equation (7) presented in the table by the BEP ($) line. The 

Break-Even Pointis served both in the initial production condition and in the other scenarios. Table 6 shows 

a comparison between the total variable costs of production up to the Break-Even Pointobtained in each of 

the approaches. 

Table 5: Break-Even Point (proposed model with λ = 0.25) 

Products Initial Condition Scenario 1 Scenario 2 Scenario 3 

BEP ($)c € 00.00 € 00.00 € 00.00 € 00.00 

BEP (und)d 1454 1451 1454 1434 

 und ∑ und ∑ und ∑ und ∑ 

Alexa 216 

516 

433 

518 

216 

516 

159 

521 Alica 100 72 100 162 

Aurélia 200 13 200 200 

Elsa 100 

335 

100 

330 

250 

335 

100 

311 Ema 113 113 25 113 

Erika 122 117 60 98 

Daniela 126 

603 

126 

603 

126 

603 

301 

602 Diana 216 433 216 159 

Denisa 100 72 100 162 
cBEP ($) – Residual value after reaching break-even point. 

dBEP (und) – Total units of products. 

  – Sum of BEP for each production line made up of 3 products 

Table 6: Total variable costs of production 

 
Variable 

Costing 

Proposed 

Modeling 

Absolute 

Difference 

Relative 

Difference 

Initial € 41,927.40 € 34,935.00 € 6,992.40 16.68% 
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Condition 

Scenario 1 € 37,972.40 € 31,935.00 € 6,037.40 15.90% 

Scenario 2 € 41,910.40 € 34,935.00 € 6,975.40 16.64% 

Scenario 3 € 42,616.20 € 35,740.00 € 6,876.20 16.14% 

 

It is possible to see a reduction in the total variable production costs up to the BEP for the initial 

condition and other scenarios. The proposed model offers an average result 16.34% more economical than 

the standard approach [4]. This gain can be converted into gross profit since, after the break-even point, any 

product mix will generate a profit since the fixed costs have already been reduced and the sale price of each 

product is always higher than the unit cost of its production. 

4. Conclusions 

In addition to offering economic advantages over the standard approach, the proposed model is able to 

provide the production manager with an insight into the competitiveness behavior between products on the 

production line, being an important support for more efficient operational planning, reduction setup times, 

proper planning of acquisition and use ofraw materials and reduction of unnecessary movements. Prior 

knowledge of the Break-Even Pointalso provides important information for the sales team, making it 

possible to forecast what to sell and how much to sell for each product, in addition to efficient planning of 

marketing strategies associated with the planning of sales goals. 

Another relevant aspect of this modeling is the lambda correction factor, this correction factor appears in 

the modeling as an artifice that enables the solution of the problem, in other words, without this correction 

factor the problem would not have a viable solution and would fall into the same problem of previous 

modeling [8] [9] [10] [11] where it was possible to express this problem as an optimization problem, but that 

contained infinite solutions, which for industrial and business use does not have many applications and 

advantages, in general, entrepreneurs look for unique and economically viable. the addition of this correction 

factor is also a relevant scientific contribution, as it raises questions about the behavior of the BEP as a 

function of its value, as stated throughout the text, lambda values closer to zero tend to funnel the solution 

into a single product (which has the highest contribution margin) and neglecting the production of other 

products, on the other hand, solutions closer to 1 tend to "uniform" the distribution of products better, so 

future works can explore the optimal value of lambda in relation to some other objective function, thus 

obtaining a more optimized distribution, but not necessarily at a lower cost. 

Finally, another suggestion for future work is to use stochastic variables for the values of sales price and 

unit variable cost and to evaluate the behavior of the BEP of each product for different values of these 

variables, thus obtaining a BEP as an interval instead of a single and fixed value as presented in this work, 

this would make the solution closer to the realization of companies, as the costs involved in the manufacture 

of products undergo constant changes due to the monetary exchange that directly impacts the costs of 

acquiring raw material from other countries, as well as changes in the sales price that occur as a result of 

negotiations between the interested parties. 
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